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PREFACE

This report is part of RAND's continuing interest in the

detection of high-altitude nuclear explosions. In particular, it

is concer!ned with the low-frequency hydromagnetic waves which are

generated by such explosions, and which are detected by ground-

current measurements at world-wide locations. In this report, we

direct our attention to the response of the ionosphere to such low-

frequency hydromagnetic disturbances. The purpose is to separate

the effects of the medium from those of the source on the trans-

mitted disturbance.
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SUtOIRY

In this report, we study the propagation through the ionosphere

of sub-extremely-low frequency (< 0.1 cps) hydromagne:ic waves. We

consider the case of plane wave propagation in the vertical direc-

tion in the presence of a uniform magnetic field which is also in

the vertical direction (so-called polar propagation). The purpose

is to separate out the effects of the ionosphere on hydozmagnetic

disturbances propagating through it. The ionosphere is assumed to

extend infinitely far in the upward direction and to terminate

abruptly 80 km above a perfectly coie-ucting flat earth. The charged

particle density is assumed to be constant throughout the ionosphere,

and the neutral particle density to vary exponentially with altitude.

The coupled hydrodynamic and electromagnetic equations for the

medium are linearized, and, with the approximations valid for low-

frequency waves, the resulting system is shown to reduce to a

second-order wave equation. A steady-state solution of this equa-

tion is obtained, from which transmission and reflection coefficients

are calculated. It is found that, for ionospheric conditions

corresponding to daytime at sunspot maximum, the transmission co--

efficient exhibits a pronounced resonance at a frequency of about

0.015 cps. Since this is approximately the frequency of so-called

Pc oscillations, it is suggested that the resonance just described

accounts for these natural micropulsations in the geomagnetic field.

It is found that t'.c zesonance shifts to higher frequencies at night,

also in agreement with the data on natural Pc oscillations. It is

shown that the presence of an almost perfectly conducting ground

(at these frequencies) is important in determining the location of

the resonance. Finally, it is shown that disturbances reaching the

ground, in the polar regions, should be very nearly left-circularly

polarized.
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I. INTRODUCHION

A subject which has been receiving considerable attention for

a long time is the existence of sub-extremely-low frequency fluctua-

tions in the geomagnetic field. These fluctuations, which have

periods of the order of seconds to tens of seconds, are associated

with many naturally occurring geomagnetic phenomena, and have also

been generated by nuclear explosions at high altitude.

The experimental data on natural field fluctuations have been

summarized by Carmbell (1963). Briefly, the data show regular

oscillations in the frequency range below about 0.2 cps appearing

over broad sections of the earth with related phase on days of high

solar-terrestrial activity. The oscillations appear quite sinu-

soidal, with a period which varies slightly with season and con-

siderably with the time of day; longer period oscillations are

observed near noon whereas shorter periods are noted at night.

Maple (1959), for example, found two daytime bands of oscillations

centered at 70 seconds and 20 seconds, respectively, and a nighttime

band with an average perin )f 8 seconds. The polarization of the

magnetic field is elliptical in the horizontal plane. The signal

amplitude shows a latitude dependence, dropping off toward lower

latitude by a factor of about k per 200 to 300 lower latitude.

In addition to the data on natural fluctuations, much data

exists on the fluctuations generated by various high-altitude

nuclear explosions. This data shows a striking similarity between

bomb-generated and natural fluctuations in two important respects.

In the first place, the initial phase of signals generated by such

explosions arrives essentially simultaneously at stations all over

the world (with time delays after detonation which depend on the

altitude of the explosion). Secondly, the signals generated by a

given explosion' are essentially the same in shape and duration at

stations all over the world. In general, one may say that the

signals resulting from low-yield detonations, such as the Argus

series, are quite similar in most respects to naturally occurring

signals.
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One further point of interest is the power spectra associated

with oscillations in this frequency range. Several authors
(Santirrocco and Parke, 1963; Smith, azek and Bostick, 1961;

,Canbelj, 1959; and hoton and 4affmann, 1962) have analyzed the

spectra associated with natural fluctuations, while Hodder (1963)

has presented a spectral analysis of signals resulting from nuclear

explosions as well as of the natural background. These analyses

show one or more large peaks in the frequency range of interest.

In particular, a large fraction of Hodder's spectra, both bomb-

induced and naturally occurring, show a very prominent peak at about

.02 cps.

The simultaneity of arrival of these fluctuations over broad

sections of the earth has led many authors to conclude that the

signals received at aricus stations arise from a common ionospheric

disturbance. The disturbance is generally believed to propagate

through the ionosphere as a hydromagnetic wave which, upon emergence

from the ionosphere, propagates as an electromagnetic signal to the

various points of detection. The time delay between detonation and

receipt ef explosion-generated signals would then represent the trans-

it time of the hydromagnetic disturbance through the ionosphere.

Estimates of these transit times are in reasonable agreement with the

observed delays.

The point which concerns us in this paper is the striking

similarity among signals in this frequency range resulting from a

variety of natural causes, and the similarity between these natural

signals and those which are produced by explosions. These similari-

ties have suggested to many authors the importance of the ionosphere

in the transmission of such disturbances. We would point oat here

that the similarity between natural fluctuations, which are generated,

for the most part, outside the ionosphere, and explosion-produced

fluctuations, which are generated in the ionosphere itself, emphasizes

the particular importance of the lower ionosphere (below about 400 or

500 km) in determining the characteristics of the observed signals.

It is this region of the ionosphere to which we turn our attention.
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The low-frequency transmission characteristics of the lower

ionosphere have been investigated by Francis and Karplus (1960) and

by Field (1963). The former, making certain simplifying assumptions,

numerically integrated the differential equations for the propaga-

tion of hydromagnetic disturbances in the ionosphere, using empirical

ionospheric properties, chosen to correspond to the daytime at

sunspot maximum. Their numerical results show that the ionosphere

is essentially transparent for angular frequencies somewhat less

than 1 radian/sec. Field (1963) used empirical ionospheric proper-

ties to calculate an altitude-dependent complex index of refraction

for the ionosphere. He then approximated the ionosphere by two

layers, the upper of which has a real index of refraction and the

lower of which has a complex index of refraction, and calculated

the resulting transmission coefficient. Field's results are sub-

stantially in agreement with those of Francis2 and Karplus (1960).

Neither investigation, however, revealed any prominent resonances

in the transmission coefficient.

In this paper, we also calculate the transmission and reflec-

tion coefficients for the lower ionosphere. We use essentially the

same model as Francis and Karplus (1960), but with some additional

simplifications which make possible an analytic, rather than a

numerical, solution. The advantages of an analytic solution lie,

of course, in the physical insight it provides and in the ease with

which the effects of a variation in ionospheric parameters can be

determined. Even with the necessary simplifications, the important

features of the phenomenon appear in such a model.

We start by incorporating our simplifying assumptions into

the basic equations of motion for the ionospheric constituents.

From these basic equations we derive a wave equation, which we then

examine in the frequency region below about 1 cps for the case of

polar propagation. We show that, for the polar propagation of hydro-

magnetic waves in this frequency range, the ionosphere consists

essentially of threL "regions": a lossless "Alfven region," above

about 350 km, in which the disturbance propagates as a pure Alfven

wave, a "Hall region," below about 130 kin, which is dominated by



-4-

ion-neutral particle collisions and in which the propagation

characteristics are quite different from the Alfven region, and

an intervening "transition region" which smoothly connects the

Alfven and Hall regions. (We shall sometimes refer to the Alfven

region as the "uppcr ionosphere," and to the transition and Hall

regions as the "lower ionosphere.") We then assume that the Alfven

speed is uniform throughout the entire (seni-infinite) ionosphere

and that the ion-neutral particle collision frequency (which enters

only in the transition region) varies exponentially with altitude.

Witai these assumptions, we are able, without the further introduction

of any artificial boundaries, to obtain an analytic solution of the

wave equation. The solution immediately yields the desired trans-

mission and reflection coefficients. The transmission coefficient

is found to exhibit a pronounced resonance at a frequency of .015

cps for daytime conditions, with an upward shift in frequency for

nighttime conditions. This resonance is in the frequency range of

so-called Pc oscillations, which are therefore apparently accounted

for by the filtering action of the lower ionosphere. (This resonance

does not appear in the work of Francis and Karplus (1960), whose

calculations extend only to a frequency of I rad/sec at the low and,

nor in the work of Field (1963) who was concerned only with an

average transmission coefficient rather than in its detailed dependence

on frequency.)

It should be mentioned that our assumption of a constant Alfven

speed throughout a semi-infinite ionosphere treats the upper

ionosphere as a lossless, non-dispersive medium (or transmission

line). It is known, however, that the Alfv~n speed actually in-

creases with altitude in the region between about 200 km and 2000 km.

This should be of little consequence for the initial phase of bomb-

induced signals which are generated at altitudes of a few hundred

kilometers, but may be expected to modify signals which are generated

at altitudes of 2000 km or more. The transmission properties of a

medium with varying Alfven speed have been investigated by several

authors. Jacobs and Watanabe (1962) have considered the case of a

collisionless upper ionosphere in which the Alfven speed increases
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exponentially with altitude to a maximum at 2000 km. They approxi-

mated the medium by six uniform Alfven layers oi equal thickness,

the lowest of which is grounded, and numerically calculated a trans-

mission coefficient. Field (1964.) has obtained an analytic solution

to the same problem. These authors find that a filtering action

takes place between the regica of maximum velocity at around 2000 km

and th'. bottom of the upper ionos;phere. Various resonances appear,

the lowest of which occurs at a lfrequency of about.l cps, or about

an order of magnitude higher thai the frequency of the resonance

associated with the lower ionosphere. Prince and B3stick (1964)

have carried out numerical calculations using a more realistic

ionosphere, with varion collisional effects taken into account.

They find similar resonances in the transmission coefficient. These

resonances in the transmission coefficient of the upper ionosphere

are thought to be responzible for "pearl" type oscillations.

For disturbances originating at heights of 2000 k-n or more (and

in the frequency range below about 1 cps), the ionosphere below 2000

km therefore appears very much like tMo successive filters. The

upper filter has a transmission resonance at about .1 cps, and the

lower filter a transmission resonance at about .015 cps. The com-

bined transmission coefficient is essentially the product of the

separate transmission coefficients.

• m m m m .
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"II. WAVE EQUATION IN THE IONOSPHERE

We start by making the same simplifying assumptions as Francis

an Mull" (1960), viz.,

(1) the static magnetic field ta uniform,

(2) the pressure is so low that hydrostatic restoring forces

and gravitational forces are small compared to electro-

static restoring forces,

(3) the fractional ionization is so small that collisions

between electrons and ions may be neglected,

(4) the fractional ionization is so small that collisions of

neutrals with charged particles may be neglected (i.e.,

the neutrals do not participate in the mass motion), and

(5) the ionosphere is still and flat, and the wave normal is

along the ionospheric density gradient.

In addition to these assumptions, we further assume that

(6) the static field is uniform and in the vertical direction,

which restricts the applicability of our model, in detail at

least, to the polar and auroral regions. These basic assumptions

will now be incorporated into the equations of motion for the

ionospheric constituents.

We start with the following transport e4uations for the electrons

and (singly-charged) ions:

ev xB
-.-. s-..(E + -= -1) v(a

av i ev . x B

at i i M. (E + - i vi (lb)

where Ue and are the collision frequencies of electrons with

neutrals and ions with neutrals, respectively, and the other symbols

have their usual meanings. (We shall use cgs units throughout.) If

we take the positive z-direction to be vertically downward and
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restrict our attention to plane transverse waves of small amplitude,

we may write

- (Vl, v2 , 0) (2a)

B - (bl, b 2 , Bo) (2b)

-0

E (E 1, E2 , 0) (2c)

where the v, b, and E are assumed to be small quantities. Linearizing

the transfer equations, we obtain

; + ve e + (3a)

it We Ve 3  e ye m e
M --

B )i -x e 3 +(3b)

e BI0

where e ie a unit vector in the positive z-direction, and epis -,ic

is the cyclotron frequency of the particular ionospheric component.

iith the assumption of a static field in the vertical direction, an

essential simplification of the equations results if we introduce

the complex variables

v = v1 - i v2 (4a)

E - E1 - i E2 . (4b)

In terms of these variables, Eqs. (3a) and (3b) take the form

e e e m
e

e0t- i wi) vi •inE (Sb)

in1 m m • mm m m m m m mm m • m i m m
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where P. is the operator

3 (6)

for the component in question.

Remembering t.hat the current density is defined as

n e(vi - v ) (7)

where n is the number density of electrons and ions (assumed equal),

we may combine Eqs. (Sa) and (5b) to obtain

(O + iW)(ie iWi)j e[ (e+ ie)+ ÷ (iiw)jIE (8)Ce e - + w)+ "
1 e

where

= - J2 " (9)

We note, in passing, that Eq. (8) provides a very simple

derivation of two of the diagonal components, a, and a2, of the

conductivity tensor. The equation defining the conductivity tensor

reduces, in the present case, to

jalE+ G2 E x e 3  (.LO)

which may also be written

j = (a1 + i U2) E. (11)

Assuming a time dependence of the form e -i• Ln Eq. (8), and

comparing Eqs. (8) and (11), we obtain

2 -iw Vi - iw
n e1 1a" 2 + 2 2(,2)o1 "e[i-im)2 + We] -i(i'i) +WI"
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c ne 2  2 2 2 (12b)
-m ) + X m x x

in agreement with the usual formulas for these conductivities.

Finally, to derive a wave equation for E, we combine Eq. (8)

with Eq. (7) and

72 E -- T SU •(13)
2 •t

C

to obtain

(0 +- i .i) -72 E 4(ma + -, (14)
e e i 2 ee e ii at

e i

where we have used m ew = m.x.. The general wave equation is evi-

dently a complicated fourth-order equation and we shall not attempt

to discuss its general properties at this time. We do note, how-

ever, that in the limit of very strong magnetic field and no

collisions, i.e., We", UL - - and "e, i -0, Eq. (14) reduces to
the usual equation for Alfven waves

V 2 E. 1 2 (IE
2 2

v at
a

B
2

2 o
where v n 0 is the square of the Alfven speed.a 4Ti n(mi+ m e)

Fortunately, for the frequency regime under consideration,

Eq. (14) simplifies considerably. Much of the simplification re-

sults from the properties of the ionosphere in the region of

interest (80 km - 500 kin), viz.,

(a) e C 106 rad/sec,
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(b) 10 < < 10 rad/sec,

2
(c) a,. - 10 rad/sec,

(d) 10-2 < Ui < 104 rad/sec.

(Sae Francis and Karplus (1960) for a tabulation of ionospheric proper-

ties). In view of these relationships, and the fact that we are

interested in frequencies x << x. (i.e., -- << '.), the followingI 21 1

approximations become valid:

Q + ix, e i W (16a)
e e c

i - U- i.. (16b)

Tiet
Furthermore, since >i•(-. e

1

m e + m. 0.+ m m.i hm (16c)

to terms of relative order (m e/m) 2 . With these approximations,

Eq. (14) becomes

CO - iUL) V 2 E I- 1 (17)

a

a somewhat more tractable second-order equation.
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Before attempting a solution of Eq. (17), it is worth noting

that for hydromagnetic waves in the frequency regime below about

1 cps, the ionosphere consists of three essentially distinct regions,

which are characterized by the relative magnitudes of the three

frequencies -ji, 1i, and x (the angular frequency of the disturbance).

In order of increasing altitude, these regions are:

(a) Hall Region - This is defined to be the region in which

the inequality x << :. < i is satisfied, i.e., where the collision

frequency is the dominant fre4uency. It lies, therefore, between

about 80 km and 130 km. The boundaries of this region are inde-

pendent of w, provided that w << w.. Here, the Hall effect pre-

dominates; in terms of the conductivities defined by Eqs. (lla) and

(lib), a 2 >> 01. In this region, Eq. (17) reduces to

0U.)
7 2 E D (18)

2 At
v

a

i.e., to a Schrodinger-like equation. It is important to note that,

though this region is collision-d. ninated, the wave equation never-

theless does not contain the collision frequency explicitly. The

implicit importance of collisions is, however, reflected in the form

of the equation.

(b) Transition Region - This region is defined by the inequality

S< ,)i < w•'. It lies between about 130 km and 353 km. The location

of the upper boundary of this region depends on the frequency w;

the value given is appropriate to a frequency w -t .3 rad/sec. Here

no further simplification of the wave equation is possible; collisions

thus play an explicit role in this region.

(c) Alfvdn Region - This is the region in which the inequality

Dl < W << W 1 is satisfied. It is therefore the region above about

350 km, and in our model is assumed to be semi-infinite in extent.

In this region, Eq. (17) reduces to Eq. (14), the usual equation

for Alfven waves. The wave equation, in this region, is independent

of the collision frequency.
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actual functional form of the collision frejuency enters only in

the transition region. To obtain an analytic solution to the wave

equation, we must, of course, approximate the ionospheric collision

freiuency by an analytic function. To obtain an analytic approxi-

mation which is valid over a large region of the iovosphere, and

which at the same time permits an analytic solution of the wave

equation, does not seem possible, We see, however, that this is

fortunately not necessary; we are presented with the far simpler

task of constructing an expression which is a good approximation

only over a relatively limited portion of the ionosphere.

Finally, let us emphasize that we have been speaking of "regions"

in a qualitative rather than in a mathematical sense. In the model

which we employ below, it will not be assumed that these regions

are separated by artificial sharp boundaries, with a separate wave

equation appropriate to each. The single wave equation, E4. (17),

will govern the propagation of the disturbance throughout the entire

ionosphere. The essence of the above discussion is that the

character of the wave equation changes (continuously, of course)

from one region to the next, and this property will obviously be

reflected in the solution to that equation.
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In this section we shall construct the steady-state solution to

Eq. (17) for a model ionosphere which will be described below. If

we introduce a time dependence of the form e it, Eq. (17) becomes

2 2
dE + n (w;z) E 0 (19)

dz2 c

where

c2 w. (1 - iw/vi.)
(1 d (20)

n (w;z) 2 w (I iw i (V20

a

In Eq. (19), E now denotes E(z,w), the Fourier transform of E(z,t).

With a time dependence of the form e- iwt and the definition of

E(zt) by Eq. (4b), positive values of w correspond to left-circularly

polarized waves, which we shall call the L-mode, and negative values

of w correspond to right-circularly polarized waves, which we sball

call the R-mode. (In the case of polar propagation which we are

considering, these two modes are decoupled from each other.)

The more important properties of our three regions can already

be deduced from Eqs.(19) and (20). In the Alfven region, w/li>> 1

and wi/hi >> 1, so that the index of refraction n(w;z) becomes

n(w;z) -. n. M c (21)v
a

This is the well-known result that, for both modes of propagation,

the Alfven region is a lossless and non-dispersive medium.

In the Hall region, wlvi << 1 and w i/i << 1, and the index

of refraction becomes

Wi .
n(w;z) -~ n,~(w) (7721 . (22)
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Ths.is e ±*, th*9..•,,. nd'u_ , diffteenL to the too modes of

propagation. For the L-mode (w > 0), the index of refraction is real,

and this mode therefore propagates through the Hall region without

attenuation, but obviously with dispersion. For the R-mode (w < 0),

the situation is quite different; the index is pure imaginary, and

this mode is consequently evanescent. Because of this, the trans-

mission coefficient for the R-mode drops off very rapidly with fre-

quency, and it is mainly the L-mode which gets through the ionosphere.

The disturbances reaching the ground should thus be circularly

polarized. (We must remember, of course, that we are treating the

case of polar propagation; in the higher latitule, but non-polar,

regions, we would expect the same mechanism to produce eliptical

polarization, in agreement with observation.)

In the transition region, no similar simplification of the

index of refraction takes place. The index for both modes is complex,

so that in this region each mode undergoes both attenuation and

dispersion.

The quantities Dip wit and v 2 in Eq. (19) are, of course, all

functions of the height z. The Alfven speed va depends on the

density of ions, which varies with altitude (and time of day). How-

ever, as we have pointed out, we are concerned only with the trans-

mission properties of the lower ionosphere (i.e., below about 350 kin).

Over this region the ion density is relatively constant (except at

the very bottcm, where we will replace the very rapid actual varia-

tion with a discontinuity). We will assume that the Alfven speed is

constant throughout the whole ionosphere, with a value appropriate

to the lower ionosphere. As we have stated previously, this approxi-

mation should have little effect on the calculated properties of the

lower ionosphere. The same remarks apply to the ion cyclotron fre-

quency wit which is also assumed to be constant.

It now remains to approximate the ion-neutral particle collision

frequency, u C For reasons discussed above, it is sufficient to have

an analytic approximation which is accurate only over the transition

region. Over this region, the collision frequency is approximated

rather well by an exponential; we therefore take vi to have the form
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S=, w ei' (23)

We have taken the plane z m 0 to be at that altitude at which u, - Wit

or in other words, at the "boundary" between the Alfven and transi-

tion regions, which occurs at an altitude of about 130 km. (The

positive z-direction has been taken vertically downward, as before.)

For the time being, the collision frequency scale-height C will be

left as a parameter, with an appropriate numerical value to be

assigned later. This will enable us to examine the role played by

the transition region in determining the transmission coefficient.

It is convenient at this point to work with dimensionless quanti-

ties, which we shall denote by a tilde. To do so, we introduce the

following units:

unit of frequency - wi

V
unit of length a-

Wi

In these units, the frequency range of interest is W << 1. Intro-

ducing these units and combining Eqs. (19), (20), and (23),we obtain

d E + f ; E/C) - 0 (24)
-i2

where

f&; w7 iweW; (25)1 - ie'W "

The propagation problem actually extends down to the surface of

the earth, which we treat as a perfect conductor at the low freiuencies

of interest to us. At the base of the ionosphere, the variation in

composition is very rapid compared with the wavelength in its vicinity;

we therefore replace the actual variation in composition by a dis-

continuity at z - z . With our choice of coordinate axes, the

atmosphere is therefore divided in the following way into two
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atmospheric regions (the upper of which we have already subdivided

into ionospheric regions);

z < z1 ; ionosphere

(z = 0; altitude at which p1  w,)

z - 1l; discontinuous transition to neutral atmosphere

z < z < z1 + h; neutral atmosphere

Sz= + h; surface of the earth.

The quantity h is the height of the neutral atmosphere.

Since the earth is assumed to be a perfect conductor, the field

at the surface of the earth must vanish. In the neutral atmosphere,

the field must therefore have the form

E -A R) s in V i 'z~ - - (26)

(-.< Z, < -Z +-
A. 1

where A (0) is some urknown function of W. The boundary conditiono

we impose at the base of the ionosphere is that the field and its

derivative are continuous, or that

1 K.T. ý .--k cot ~ 1~ (27)
dE I Ei 0 0h
dz " -z:

where the approximation of the cot follows frora the fact that the

wavelength in air is extremely long.

We next turn our attention to the solution of the wave equation

in the ionosphere. From Eq. (25) it is apparent that for Z• >> 1

(i~e., in the Hall region), f(w; i•/ . There must conseluently

exist Lw3o linearly independent solutions, W1 and W2 , of Eq. (24)

aach that

W1 -

W'2 -. e Z - (28)
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We take our general solution of Eq. (24) to have the form

E = Ai(i)(WI + Ctd2) (29)

where A (•) and a are two, as yet unknown, functions of •. Since the

asymptotic form given by Eq. (28) is a good approximation in the Hall

region, we have

-iW z)

Ai• ~(Z zee e(0

Using Eq. (30) to evaluate the left-hand side of Eq. (27) and solving

for a, we obtain

2i-

½Ye+i (31)(1l-i i i

which, substituted back into Eq. (30) gives, for the electric field

at the base of the ionosphere,

E- iz• A, O _h) e 1(32)

To obtain a transmission and reflection coefficient, we must

examine our solution, Eq. (30), in the Alfven region (iy << - 1).

In the Alfven region, Eq. (25) becomes f (11; f -, w 2 ; consequently,

any solution of Eq. (24) tecomes some linear combination, in the

Alfven region, of the two linadrly independent solutions e' and

e We may therefore write

W -a e 4 b e
1i z -1 2 (33)
2-4a2 e -b2e .. )
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Combining Eqs. (33) and (29), we obtain for the field in the Alfven

region

iwz - Z -

E•A(ii (a1 +cs 2 )(eIi + r e))
1 2 (34)

where

b + cb2r A, 2 (35)
a1 +a2

We shall refer to Irn as the amplitude reflection coefficient; the

square of this coefficient is the usual energy reflection coeffi.cient.

From Eqs. (30) and (34), we can calculate the ratio of the

electric field at the base of the ionosphere to the incoming-wave

part of the electric field in the Alfven region. This quantity,

which we call the auplitude transmission coefficient for the electric

field, and which we denote by tE, is given by

S. a - . (36)

AIi)(a1 +.Ya 2) (i-i) • hi (a 1 + Ye2)

In practice, we are interested in the magnetic field at the

surface of the earth which, at these extremely large wavelengths in

air, is essentially the samie as the magnetc.c field at the base of

the ionosphere. Combining the induction equation with Eq. (27), we

obtain

"B Cz 2d EM! - c I (37)

where B - B - i B . On the other hand, the induction equation
x y

applied to Eq. (34) gives
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B icArui))(a 1 +Za - r e

so that, in analogy with Eq. (36), the amplitude transmission co-

efficient for the magnetic field, which we denote by tB2 is given

by

%= 1 -1 2Z) 2 e W ea (38)eiA i nw ( a I+-Ora 2) w k(1-i• ½ h) (a ia2

It remains now only to determine the quantities al, 82, b1 ,

and b2 . These are obtained by determining thp solutions, W1 and

W 2 of Eq. (24) which have the form prescribed by Eq. (28) and

examining them in the limit z - - m, where they must assume the

form. given by Eq. (33). In order to avoid introducing any un-

necessar, mathematical detail at this point, we shall defer this

procedure to the Appendix and merely present the results in the

next section.
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The numert.cal results presented in this section will be based

on the following values of the relevant parameters, chosen to coin-

cide with the ionosphere of Francis and Karplus (1960):

h = 80 km

zI M50 km

w i (unit of freiuency) - 175 rad/sec

_a 1.2
- (unit of length) = .----km

10. N. 2

I
-6

N. ion density in (no./cc) x 10 .

We recall that the cyclotron frequency w. is considered constant
I.Ithroughout the ionosphere; the nul rical value chosen for w . is

that fiequency at which Di = wi in the actual ionosphere, which, by

El. (23), also defines the plane z = 0. The numeric in the unit of

length is based on an ion atomic weight of 26, which is also appro-

priate to the region around z - 0, i.e., around 130 km.

To obtain the transmission and reflection coefficients, we must

introduce the expressions obtained in the Appendix for al, a2, b1 ,

and b2 into Eqs. (38) and (35). The results are most conveniently

expressed in terms of a functioni grW •, defined by

W - 2:jt½ I(- k )X~ W ?~wz wg(' •'.' - (1 - ixp6 Z" W( - i~l• W

(39)

where, as usual, r denotes the Gamma-function. Combining the results

of the Appendix with Eqs. (35) and (38), respectively, we obtain

r a' -( '• ._ -z-" + (I 1 1- 1) R (' _Z-)_ ('40)
(1 + .) g. •,0 + (I - W ") 9(-W ½,•
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and

4
tB r (41)

B rl-i~Ml+~ g(- , +(l-w+)g(-W J11))

(As far as the functional form of g is concerned, w and Z are

treated as independent.)

Before obtaining numerical results for r and tB, it will be

instructive to examine the limiting case Z- 0. As can be seen

from Eq. '23), this case corresponds to a collision frequency

0 z < 0

(42)

and therefore to a medium consisting of two uniform layers, an

Alfve~n region and a Hall region, (in which, despite the infinite

collision frequency, it is still assumed that the neutral particles

do not participate in the mass motion), separated by a sharp boundary

at z 0 0. (This limiting case can, of course, be obtained much

more simply by direct calculation.) With Z- 0, all of the Gamma-

functions in the above expressions are unity, and considerable

simplification results. It is not difficult to show, for example,

that

Inl = 1 (43)

for both the L-mode and the R-mode, although the physical signifi-

cance of this result is quite different for the two modes. For

the L-mode, this is an expression of the fact that both regions are

lossless (real index of refraction in both regions), and the

perfectly conducting earth reflects all of tie incident energy. On

the other hand, the R-mode, as we have pointed out previously, has

a pure imaginary index of refraction in the Hall region, and is con-

sequently evanescent in this region, This, coupled with the boundary
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condition which we have imposed at the surface of rhp Prih makes

this evanescent region look infinite to the incoming wave (although

with an index of refraction somewhat different from that of the

actual Hall region), and consequently leads to total reflection.

The transmission coefficient, in this limiting case, is given

by

4

r~+ )w G i 4  e lw + (1 - _k) (1 + i-w _h elz"

(44)

This coefficient will exhibit resonances at frequencies for which

the denominator of Eq. (44) becomes small. It is a well-known

result that the nature of such resonances is intimately related to

the location in the complex -plane of the poles of the trans-

mission coefficient. If a pole lies close to the real -axis

(ane we shall show shortly that this is indeed the case for the

poles of Eq. (44) in the frequency range of interest) it represents

a resonance, the real part of the pole giving the position of the

resonance and the imaginary part giving its width.

Now, the poles of Eq. (44) are the roots of the equation

(1÷+ W t)(1 - e + (l w )(1 + i k h) e - O.

(45)

We are interested in the frequency range W << 1, where Eq. (45)

becomes, approximately,

cot C½ i- -W 0-O. (46)

It is not difficult to show that the roots, , of this approximate

equation are pure real and, consequently, that the low-frequency
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poles oi Eq. (44) lie vecy close to the real w-axis, as wa• scared

above. These poles thus represent very sharp resonances, as can be

seen in Fig. 1 where ItBI, for the L-mode, is plotted against I for

the case C - 0 (with z1 = 50 km and h - 80 km), for ion densities

of 5 x 10 5/cc, 10 5/cc, and 5 x 103 /cc. The three values chosen for

the ion density are representative, in order of increasing density,

of conditions in the daytime at sunspot maximum, in the daytime at

suPrpot minimum, and in the nighttime, respectively.

A simple physical interpretation of these resonances exists in

the limiting case where we ground the ionosphere at its base, i.e.,

for the case h = 0. In this case, the roots of Eq. (46) are given by

W n , = -i -(n1 2'
hn

n - 1, 2, ... (47)

where Xn is the wavelength in the Hall region. The lowest root

therefore corresponds to the frequency at which the Hall region is

a quarter-wave plate. However, it should be noted that, since the

term W ýTi in Eq. (46) is of order unity even for the lowest of these

roots, the inclusion of a neutral atmosphere between the base of the

ionosphere and ground plays a very izportant role in determining the

positions of the resonant frequenciet;. For example, for the case

of an ion density of 5 x 10 5/cc, the lowest frequency determined by

Eq. (47) is 7 - 3 x 10 , whereas 4.be lowest root of Eq. (46) is
0 

-actually at I - 6 x 10 , a factor of 5 lower. Thus, the resonances

are shifted toward significantly lowex frequencies by the inclusion

of a region of neutral atmosphere. This emphasizes the importance

of including such a region in any .:eiculation of ioaiospheric trans-

mission coefficients.

Before leaving this two-layer- limit, we note from Fig. I that

the transmissior resonances show an. upward shift in frequency from

day to night, and from sunspot maximum to sunspot minimum, as is ob-

served for Pc oscillations. This result persists even when a transi-

tion region is introduced. This is be3t understood by rewriting E4.
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(46) in terms of the dimensional lengths z. and h, recalling that

the unit of length is va/1wi M C , where ci is a constant which
depends only on the ion mass. In terms of these quantities, Eq.

(46) becomes

cot ( Nk c i z 1) - W ý N. ci h - 0. (48)

It is clear that the roots of this equation can be written

N = d (49)
n I n

where the d are constants independent of ionospheric conditions.n
We thus find that each resonant frequency varies inversely with ion

density. This result holds strictly in the two-layer limit only for

-<< 1, since Eq. (46) was derived from Eq. (45) on the basis of

that assumption. With the same limitation on 'W, this same result

can be shown to apply in the general case to the roots of Eq. (41),

as well.

The two-layer limit considered above has two major inadequacies:

it introduces an artificial sharp boundary between the Alfven and

Hall regions, which may give rise to spurious resonances, and it
fails to include the effects of collisional losses, the very region

in which such Losses occur having been eliminated in this limit.

To include a transition region, we must calculate the transmission

and reflection coefficients for an appropriate value of the scale

height, r. There seems to be considerable disagreement, however,

as to what the appropriate ionospheric scale height is. From the

ionosphere of Francis and us (1960), for example, a scale

height of 14 km would appear appropriate, whereas the ionosphere of

Prince and Bostick (1964) puts the scale height closer to 10 km.

Because of this uncertainty in the best value of C, we shall present

the results for both C = 10 km and " = 14 km. This will, at the

same time, enable us to study the role of the transition region in

the determination of the transmission and reflection coefficients.



-25-

In Figs. 2 and 3. we have olotted It I- for thp T.-mndp. for

stile heights of € - 10 km and C - 14 km, respectively, for different

values of the ion density. (The Gamma-functions of complex argument

were calculated on an IBM 7044 electronic computer.) A comparison

of these figures with Fig. 1 for the layered medium shows that the

most striking effect of the inclusion of a transition region is the

virtual elimination of all but the lowest resonance, which is in turn

considerably depressed and broadened compared to the layered case.

This qualitative change in transmission characteristics results

primarily from the removal of the artificial sharp boundary of the

two-layer limit. The lowest resonance still remains, because at

this frequency the wavelength is many time the scale height of the

transition region, so that the transition from Alfven to Hall region

appears relatively sharp. At the higher frequencies, however, the

wavelength is comparable with or smaller than the scale height, so

that one region appears to change slowly and continuously into the

other.

The effects of losses in the transition region are contained

mainly in the reflection coefficient, since, with our model of a

perfectly reflecting earth, all the energy which is not reflected is

absorbed. In Figs. 4 and 5, we have plotted Irl, for the L-mode,

for three different densities. (We recall that Irl2 is the energy

reflection coefficient.) A comparison of these figures with Figs.

2 and 3 shows that absorption becomes important, for a given ion

density, at frequencies somewhat higher than the corresponding lowest

resonance. It is also apparent that the reflection coefficient ex-

hibits characteristic minima in the neighborhood of the maxima of the

corresponding transmission coefficient. These minima, which represent

absorption maxima, become more pronounced at higher frequencies.

A comparison of Figs. 2 and 3 with Fig. 1 shows that the intro-

duction of a. transition region sbifts the resonances, but not drasti-

cally, to somewhat lower frequencies. These resonances are thus

essentially still those frequencies at which the Hall region becomes

transparent. The downward shift produced by the inclusion of a transi-

tion region results from the fact that such a region increases the

effective size cf the Hall region.
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Based on a value of W- W 175 rad/sec, the lowest resonances

occur at a frequency of .014 cps for C - 10 km and at a frequency

of .013 cps for C - 14 km. The agreement with the 70 second period

observed by Maple (1959) is undoubtedly fortuitous, but the general

location of these resonances makes it seem very probable that they

are responsible for Pc oscillations. Another point in support of

this suggestion is the fact that these resonances, besides being

shifted to higher frequencies from day to night, are also considerably

depressed at night. This would account for the fact that Pc oscilla-

tions are mainly a daytime phenomenon.

One further point worthy of note in connection with Figs. 2 and

3 is that the ionosphere becomes essentially transparer t night

up to frequencies of the order of 1 cps. On the other Ad, in the

daytime the transmission coefficient becomes rather small for fre-

quencies greater than about .05 cps. This would account for the

fact that "pearl" type oscillations, which have frequencies of the

order of .1 cps, are mostly a nighttime phenomenon. In the daytime,

they are apparently filtered out by the Hall region.

In Figs. 6, 7, and 8, we have plotted !tBI for the R-mode, i.e.,

for I < 0. It is apparent that the transmission coefficient for this

mode drops off very rapidly with frequency compared to that for the

L-mode. At resonance, the transmitted wave is almost entirely of

the L-type, and consequently left-circularly polarized, as mentioned

previoosly.

In Figs. 9 and 10, we have plotted Irl for the R-mode, again

for three different ion densities. It can be seen that, for Ioi

frequencies, this mode is almost totally reflected, indicating that

it is nearly evanescent at these low frequencies. For frequencies

higher than about 1 cps, however, significant absorption begins to

take place, especially at the higher ion densities.

Finally, we should mention that we have considered only the

steady-state problem. The transmitted signal resulting from a

given source, however, is determined not only by the transmission
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cenpffieipnt. but, alRo by the frequency spectrum of the source. For

a given source spectrum, however, the resulting signal can be calcula-

ted from the transmission coefficient given by Eq. (40). This in-

volves a Fourier integral over frequency of the transmission co-

efficient weighted with the source spectrum. The usual technique

for evaluating such integrals is to transform them to contour inte-

grals in the complex 27-plane. The integral then becomes the sum of

the residues of the integrand at the poles of the transmission co-

efficient. A procedure for determining the poles of Eq. (40) in the

complex ,1-p'ane has been presented elsewhere (reifinger and

Greifinger, 1964). At this point we would only remark that any

transmitted signal becomes the sum of a number of resonance-like

terms, with coefficients depending on the source spectrum. The

higher frequencies are damped out more rapidly than the lower ones,

so that eventually the signal is almost purely sinu3oidal, its

frequency being given by the real part of the appropriate pole of

the transmission coefficient. This is very nearly the value of

Sat which the transmission coefficient has its maximum on the real

-axis, i.e., at the resonant frequency calculated above.
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Fig. 1 - Amplitude of transmitted magnetic field, for unit amplitude
of incident magnetic field, as a function of frequency, for
different ionospheric conditions. (N. is the ion number
density in units of 106 /cc and wi is the ion cyclotron
frequency.)
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Fig. 2 - Amj litude of transmitted magnetic field, for unit ampli-
tuce of incident magnetic field, as a function of
freluency, for different ionospheric conditions. (Ni
is .be ion number density in units of 10 6 /cc and wi is
the ion cyclotron frequency.)
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Fig. 3 Ampiitude of transmitted ,ngnetic field, for unzit
amplitude of incident t.agnetic field, as a function
of frequency, for differeat ionospheric conditions.
(Ni is the ion number density ia units of 10 6 /cc and

Wi is the ion cyclotron frequency.)
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Fig. 4 -Amplitude of reflected magnetic (or electric) field, for
unit amplitude of incident magetic (or electric) field,
as a iunctiod of frequency, for different ionospheric 6
conditions. (Ni is the ion number density in units of 10 6 /cc
and w i is the ion cyclotron frequency )
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Fig. 5 - Amplitude of reflected magnetic (or electric) field, for
unit amplitude of incident magnetic (or electric) field,
as a function of frequency, for different ionospheric
conditions. (Ni is the ion number density in units of
10 6 /cc and w. is the ion cyclotron frequency.)1
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Fig. 6 - Amplitude of transmitted magnetic field, for unit
amplitude of incident magnetic field, as a function
of frequency, for different ionospheric conditions.
(Ni is the ion number density in units of 10 6 /cc and
w. is the ion cyclotron frequency.)1
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Fig. 7 - Amplitude of transrmitted magnetic field, for unit
amplitude of incident magnetic field, as a function of
frequency, for different ionospheric conditions. (Ni
is the ion number density in units of I0 6 /cc and wi

is the ion cyclotron frequency.)
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Fig. 8 - Amplitude of transmitted magnetic field, for unit
amplitude of incident magnetic field, as a function
of frequency, for different ionospheric conditions.
(Ni is the ion number densit' in units of 10 6 /cc and
W, is the ion cyclotron frequency.)
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Fig. 9 - Amplitude of reflected magnetic (or electric) field,for
unit amplitude of incident magnetic (or electric) field,
as a function of frequency, for different ionospheric
conditions. (Ni is the ion number density in units of
10 6 /cc and wi is the ion cyclotron frequency.)
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Fig. 10 - Amplitude of reflected magnetic (or electric) field,
for unit amplitude of incident magnetic (or electric)
field, as a function of frequency, for different
ionospheric cogditions. (N, is the ion number density
in units of 10 /cc and wi is the ion cyclotron frequency.)
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APPV1NTY

In order to solve Eq. (24), we make the following change of

variable:

1 1 + - "/ -e / (Al)

In terms of this variable, Eq. (24) becomes

d2 E 1 dE 2.2.
_L !LE + uL 2+ (1) E = 0. (A2)du 2 (-l)du Lu(u-l)2 u+ -l

This is to be compared with the canonical form of the hypergeometric

equation

2 *

d F -'- + 8+8-l~ dF f CO u'& 1 F -=0.
du2 L u (u-l) u-- L @( ) u(u-l) o

du (A3)

These equations become identical if we set

cyin~cy z ii'W

i- ' " (A4)

y - 0, y' 1

We are looking for solutions of Eq. (A2) which have the form

prescribed by Eq. (28), viz.,

(z-.•). (A5)

W2 -e

In terms of the variable u defined by Eq. (Al), these solutions

must have the form
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- L

W, - e (u-i) -"C

-(u-i) i (u-.-). (A6)

The solutions of Eq. (A2) which have the form required by Eq. (A6)

are

W Ue (-I),. F(-i + , - iwo ½ - ;

1 - 2iC W; - (u-i))
(A7)

W2 . e (u-) ZW F(iZ -W + iZ w w iZ -w;

1 + 2i ; - (u-i)),

where F is the usual hyvpergeometric function.

We now need to evaluate W and W2 in the limit z - - w, which,

-rom Eq. (Al), is the limit u - w. To do this, we make use of the

analytic continuation which relates the hypergeometric function of
-1

argument x and the hypergeometric function of argument x , viz.,

r(a) r(b) F(a,b;c;x) - r(a) rcb-a) (z) -a F(a, 1-c 4 a; 1-b -a; x -)
r(c) r(c-a)

-b-_ --

+ [r-b)- (-K) F(b, l-c+b; l-a+b; x-)-
r•(c-b)

I arg (-z)I < T, (A8)

where I' is the usual r-function. We apply Eq. (A8) to Eq. (A7) and

take the limit u -. o, where the hypergeometric functions may be

replaced by unity. It is then easy to show that Eq. (Al) becomes

W -4a e +-b ew '

G a•b(A9)W -z a Zb e" -
W2 a22
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.W ZwVi .tB - S- S .Sa * 5 A&8c-i• .U iw

on the right-hand side of Eq. (A7), while the outgoing wave, e

arises entirely from the second term. The coefficients in Eq.

(A9) are given by

r(.z - 2 - (c)
al -e - ie -(1-i_ý 7i e

- W r(l + 2iZ Z k) r(-2i Z)2 Z- '
a 2  e _ ___ &-

b =e * Fa-2:iZi Z 2 zjI

b =e )e

2r(i?. II+ (-W) (liz I 4-W~)

To obtain Eqa. (40) and (41), we substitute Eq. (AlO) into

Eqs. (36) and (38), respectively, ar.d make use of the recursion

formula r(z+l) -z r(z)
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